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The laminar, boundary-layer, natural convection flow adjacent to a vertical, heated 
or cooled, flat surface submerged in quiescent cold water was studied. The results 
demonstrate for the first time the existence of multiple steady-state solutions in a 
natural convection flow. The calculated velocity profiles, over a range of the par- 
ameters, are compared with recent corresponding velocity measurements of Wilson & 
Vyas (1979) and of Carey & Gebhart (1981). The newly found additional steady-state 
solutions are of considerable practical interest because the heat-transfer rates for a 
pair of solutions (with determining physical parameters and boundary conditions 
otherwise identical) are sometimes vastly different. An important consequence of this 
study is the possible relationship of multiple steady-state solutions to the recently 
observed unsteadiness in some such flows. 

1. Introduction 
The decrease of hydrogen bonding between water molecules causes the density of 

cold water to first increase with increasing temperature above the equilibrium melting 
point. The other density-controlling mechanism, thermal molecular motion, opposes 
this effect. Eventually a density maximum is reached at about 4 "C in pure water a t  
atmospheric pressure. An important consequence is that bodies of water, such as 
lakes, freeze from the top down. Also, in vertical buoyancy-induced flows in both cold 
pure and saline water there is the possibility of a bidirectional buoyancy force. This 
results in the transition from net upflow to net downflow as the ambient temperature 
Tm is varied for a fixed density-maximum temperature Tm. 

A discussion of the early investigations of such vertical, natural convection flows is 
given by Gebhart & Mollendorf (1978). The present investigation uses a density 
relation for pure and saline water that was developed by Gebhart & Mollendorf (1977). 
This relation was designed to be a simple but accurate expression for the motion- 
causing buoyancy force in low-temperature pure and saline water wherein effects of 
the density maximum are important. 
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A number of recent theoretical and experimental studies by Bendell & Gebhart 
(1976), Carey & Gebhart (1981), Carey, Gebhart & Mollendorf (1980), Gebhart, Carey 
& Mollendorf (1979), Johnson (1979), Mollendorf, Johnson & Gebhart (1981), Wilson 
& Vyas (1979), and Wilson & Lee (1981) have added considerably to the understanding 
of these interesting and complex flows. However, several questions remain to chal- 
lenge both theorists and experimenters. The question addressed in this paper concerns 
the range of parameter values over which there exist solutions to the governing steady, 
laminar, boundary-layer approximations to the time-independent Navier-Stokes- 
energy equations. These new numerical results provide conjectured explanations for 
the unsteadiness in time, observed recently by Carey & Gebhart (1981) and Wilson & 
Vyas (1979). The observed unsteadiness arose in the vertical velocity component of 
the motion of cold pure water adjacent to a vertical ice slab, in the parameter range 
for which a bidirectional buoyancy force has significant effects. 

In  the present study, multiple steady-state solutions of the government similarity 
equations were found over two distinct ranges of the flow parameters. At Prandtl 
number Pr = 11.6 we have found multiple steady-state solutions for the density- 
extremum parameter R = (Tm - Tw)/(T'- T,) in the following ranges: R = 0.291 81- 
0.45402 and R = 0.151 49-0.151 80 as located on figure 3. For example, when To is 
taken to be 0 "C, as for a melting ice surface, and Tm is taken to be 4.029 325 "C, these 
ranges of R correspond to ambient temperature ranges T, = 5.6896-7-3800 "C and 
T, = 4.7487-4-7504 "C (see $3  and figures 3-8). As far as we know, these are the first 
multiple steady-state solutions found for any natural convection flow, although 
multiple steady-state solutions have been known in forced flows for over 25 years. They 
were found for flow past a wedge by Stewartson (1953), and more recently in chemical- 
reactor problems by Cohen (1973), and in the von KArmAn swirling-disk problem by 
Zandbergen & Dijkstra (1977) and Lentini 6 Keller (1978, 1980). Stewartson's (1953) 
multiple steady-state solutions for flow over a wedge have been used in aerodynamics 
as a basis for calculation of flows past separation (see e.g. Lees & Reeves 1964; Orimi 
& Reeves 1976). The present work may provide a similar basis for dealing with 
separated natural convection flows. 

Our fmding of multiple steady-state solutions is interesting in view of recent 
experimental studies by Carey & Gebhart (1981) and Wilson & Vyas (1979). The 
combination of our results and theirs suggests the tentative conjecture that the flow 
wanders between unstable equilibria (steady states). We call this a ' configurational 
instability'. A comparison of the numerically computed solutions presented here 
with the velocity measurements of some flows observed by Wilson & Vyas (1979) 
seems to indicate that the observed flows are indeed close to one or another computed 
steady-state solution, as well as being intermediate between them at different times 
(see $4).  

There is another important question : why does there remain a range of values of R, 
between 0.151 80 and 0.291 81, for which we were not able to compute any solutions of 
the boundary-layer equations? Wilson & Lee (1981) encountered a similar gap in R 
in which they could not find solutions of the time-independent Navier-Stokes-energy 
equations. Yet, for parameter values in this gap, experiments indicate that flow still 
occurs. Could it be that no steady flows exist when the buoyancy force has these 
stronger bidirectional characteristics ? These questions will also be discussed in $4. 

We close this section with a brief summary of the main features of the new solutions 
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we have computed and the method used to find them. These solutions all exhibit 
reversals in the vertical component of velocity u cc f‘ (see figures 6-8, and note that 
the very weak reversal in figure 6(a) is indiscernable with the scales used). Inside 
reversals arise for 0.29181 < R < 0.45402, and outside reversals are found for 
0.15149 < R < 0.15180. For example, the solution in figure 8(a), which is initially 
negative on (0, 2 + ), shows an inside reversal, and the solutions in figure 7 (a), which 
are negative for 7 > 3, show outside reversals. The new solutions have ever more 
pronounced inside reversals as R increases from 0.291 81 to 0.45402 ( - q ( 0 )  decreases 
from 0.49250 to 0.00500). The relative values of the minimum and maximum values 
of solutions at the two ends of this range are: 

at R = 0.45402 and -$‘(O) = 0.00500 

and at R = 0.291 81 and - $’(O) = 0.492 50 

f’, $ and 7 are defined later. 
The heat-transfer rate at the vertical flat surface (y = 7 = 0), determined for the 

previously known steady-state solution at R = 0.454 02, is - $‘(O) = 0.975 20. That 
found for the second steady-state solution at the same R is -$’(O) = 0.00500. The 
ratio of these heat-transfer rates is approximately 200. This is striking, and would be 
easily measurable should the existence of both computed solutions arise in experi- 
ments. 

The new solutions have been discovered by two means. The first is a simple and 
well-known tool, that of suspending (adding below) a new differential equation 
dR/dq = 0 to the system studied. This additional equation permits one to introduce 
a new boundary condition containing a parameter that can be varied as desired to 
generate a family of solutions to the boundary-value problem by continuation. The 
second means is the use of state-of-the-art two-point boundary-value problem codes, 
a collocation code COLSYS by Ascher, Christiansen & Russell (1978) and a multiple- 
shooting code BOUNDS by Bulirsch, Stoer & Deuflhard (1982) (see also Bulirsch & 
Stoer 1966; Diekhoff et al. 1977). 

2. The boundary-value problem 
The Navier-Stokes-energy equations for two-dimensional natural convection of 

pure water adjacent to an impermeable, vertical, isothermal surface are (see figure 1) 

w, + (Dw) w = - - gradp + gF(T, TJ + vbw, (2.la) 

T,+w.(VT) =&AT, (2.lb) 

1 

P 

div w = 0, (2.lc) 
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Y 

(Id ( b )  

FIGURE 1. The coordinate systems: (a) upflow, (b )  downflow. 

where w = (uv)". Here u, v, T and p are respectively the z- and y-components of 
velocity, the temperature and the motion pressure (the local static pressure minus the 
local hydrostatic pressure), at location (2, y) at  time t. The matrix (Dw) is the Jacobian 
of w. The constant quantities p, g ,  v, and di are respectively the fluid density at  (z, y, t), 
the gravitational acceleration, kinematic viscosity, and thermal diffusivity. The term 
gF(T,T,) is the buoyancy force. In  these equations, terms corresponding to heat 
generated by friction and pressure stress in the moving fluid, and involving derivatives 
of p, have been neglected. 

We study steady-state solutions of (2.1), that is, solutions independent oft .  We 
assume that T(x, a) = T, is independent of z, unstratified, and that p = p(T) .  Let 
p, = p(T,), let p m  be the maximum density of water, and let Tm be defined by 
p(Tm) = p m .  With To being the surface temperature (e.g. 0 "C as with a melting ice 
surface), the density-extremum parameter has been previously defined aa 

and we conventionally call 
T-T ,  
To-T,' 

$$=- 

the temperature-excess ratio. The buoyancy force gF(T, T,) has been formulated by 
Gebhart & Mollendorf (1977) as 

where for pure water at 1 bar pressure q = 1.894816, a = 9.297 173 x lO--B("C)--P and 
Tm = 4.029325 "C. These values arise in a density correlation that fits the data to 
within 3-5 ppm for pure water (Mollendorf & Gebhart 1977). The ' + ' sign is used in 
(2.2) for flows with the characteristics of figure 1 (a), which occur for R < R, x 0.15, 
largely upflow, and the ' - ' sign is used for flows as in figure 1 (b), which occur for 
R 2 Rd w 0.3, largely downflow (see Gebhart & Mollendorf 1978). One configuration 
of To, Tm, and T, that yields R < 0 is illustrated in figure 2. The corresponding flow 
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FIGURE 2. Water density p aa a function of temperature T. Also shown are conditions of 
To and T, for which R < 0. 
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FIQUBE 3. Mass flow rate f(c0) and regions of flow, buoyancy-force reversal, and multiple 
solutions. The lower R-region ie largely upflow, the upper one largely dowdow. Dashed curves 
correspond to the solutions of Carey et d. (1980), the solid ones correspond to the present results. 
No solutions exist forf(c0) < 0. 

is upward everywhere, and the ' + ' sign is used in (2.2) to obtain the buoyancy force 

Following Gebhart & Mollendorf (1978) and Carey et al. (1980), we introduce a 
stream function $ and make a similarity transformation of the time-independent 
forms of (2.la-c): 

in (2.1). 

$+, y )  = vQf(t), t = Y Q b ,  
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The new independent variable is 7, and the new dependent variables are f ,  q5, P ,  
where 

u = $-, = vGaft(q)/4x, 

p = pvaPP/(4x)? 

v = - 11% = - vG( 3f- ~f')/&, 

In the new variables ( 2 . l a - c )  become, after we divide the equations by v3cr0/(4~)~, 

qav + 574' - 3Prf#' = 9" + 
Ga ' ( 2 . 3 ~ )  

where Pr is V I E  and we have cancelled a common factor of 4x(T0- TJ E/vaG4 in 
( 2 . 3 ~ ) .  Here a x 9.3 x 10-6(°C)*, terrestrial g z 9.81 m/sa and Y x 1.67 x 104 ma/s, 

w 46000 ITo-PmlQx); 

this is large if, say, x 2 0.02m and To- T, = 5 "C. Thus we may neglect the 
terms in (2 .3)  compared with the first terms on the right-hand sides. Then, after 
multiplying (2.3 b) by G we obtain the familiar similarity boundary-layer equations: 

f" = & [ l# -Rp-  IR1"]+2(f')3-3Jy1 (2.4a) 

P' = 3r]( f ')a - 9fs' - f "  k q[ Iq5 - R p - I R p ] ,  (2.4b) 

q5" = -3Prf#'. ( 2 . 4 ~ )  

Equation (2.4b) yields P ' ( g )  after (2 .4a)  and ( 2 . 4 ~ )  are solved subject to the boundary 
conditions (2 .5)  below, and then P' can be integrated to obtain the motion pressurep. 

We are now ready to impose the boundary conditions implied by a quiescent and 
unstratified ambient medium and an impermeable, isothermal, vertical surface lying 
at  y = 0 and x 2 0. These are 

U ( Z ,  0) = ~(5, 0) = ~ ( 2 ,  CO) = T(z,  0 )  -To = T(x,  CO) - Tm = 0 

or f ( 0 )  =f'(O) = f'(0O) = 1 - # ( O )  = q5(co) = 0. (2.6) 

The equations (2.4a, c )  together with the boundary conditions (2.5) form a two-point 
boundary-value problem for ( f ,  4) on the 7-interval [0, 00). Gebhart t Mollendorf 
(1978) and Carey et al. (1980) treated (2 .4a,  c )  and (2.5) numerically. They used simple 
shooting to integrate the equations as an initial-boundary-value problem on intervals 
[O,qm]. The boundary conditions were applied a t  7 = 0. The boundary conditions 
at 00 were applied at qm and were supplemented by the known ctsymptotic behaviour 
of (f,#) at r] = 00. 
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3. Numerical methods and results 
We have solved the boundary-value-problem (2.4a, c)-(2.5) using two different 

codes: COLSYS (Ascher et al. 1978) and BOUNDS (Bulirsch et al. 1982). COLSYS 
is an adaptive orthogonal collocation code. It was chosen because one may fix the 
degree of the polynomials employed in the spline approximation so as to avoid poten- 
tial difficulties caused by lack of smoothness (discontinuous second derivative) in the 
expression for the buoyancy force. BOUNDS is a multiple-shooting code, employing 
the Bulirsch-Stoer rational extrapolation algorithm (Bulirsch & Stoer 1966) for 
solutions of initial-value problems. It was chosen to confirm the results obtained 
using COLSYS because it provides highly accurate results. The discontinuity in 
f(iv) at the point where #(7) = R does not apparently have an adverse effect upon 
solution of the boundary-value problem using BOUNDS. Roughly the same amount 
of computational effort was required when using either COLSYS or BOUNDS; that 
was about 10 CP s per solution on a CDC Cyber 174 (compilation of the driving 
programs under FTN4.8, OPT = 2). 

To generate the families of solutions, three different continuation schemes were 
used. Simple continuation in the parameter R was used to recompute and continue 
the families of solutions found previously by Carey et al. (1980). When difficulty with 
this scheme was encountered, shortly beyond the points where the simple shooting 
method of Carey et al. diverged, continuation in eitherf'(oo) (R near 0.1517) or #'(O) 
(R near 0.292) was employed. To implement continuation with respect to  f(c0) or 
d'(O), R was taken as an additional unknown in (2.4). That is, the equation R' = 0 
was appended to the system, along with an additional boundary condition specifying 
eitherf(c0) or #'(O), and then the new system was solved for a sequence of values of 
f(oo) or @(O) to obtain families of solutions. 

The boundary-value problems were solved on intervals [O,rm], with qm = 60, 80, 
100, ..., 500, and the solutions compared. When the solutions corresponding to 
successive lengths agreed with each other to five significant figures, the interval was 
accepted as sufficiently large. Near the limit points ('noses') that are present in 
figure 4(a) for R w 0-1518O,f(oo) x 0-04500 and R x 0.151 49, f(m) w 0.01500 it was 
necessary to solve on intervals up to length 500 before the above criterion was met. 
Near the limit point in figure 5 at R w 0.29181, f(c0) w 0.17511, -#'(O) w 0.49250 
an interval length of 300 sufficed. 

The main features of the new solutions of (2.4)-(2.5) we have found as compared to 
the previously known solutions are illustrated in figures 6-8. The values of f(m), 
- #'(O), f " ( O ) ,  and R and qg associated with the families of solutions we have com- 
puted are given in tables 1 and 2. All of these were computed using COLSYS. The 
solutions illustrated in figures 6-8 were independently computed and verified to 
five-digit accuracy using BOUNDS. All of our new solutions exhibit reversals in the 
x-component of velocity u (which is proportional tof' for fixed x). As R was increased 
from 0-15 we found that f '(5.03) first became negative at a value of R between 0.151 70 
and 0.151 62. The computed velocity profile at R = 0.151 72 and Pr = 11.6 reversed 
from positive to negative at 7 = 5.025 f 0.005. Carey et al. (1980) found this 7-value 
to be 'approximately 5.5'. 
As R waa decreased from 0.33 we found that f'(O.01) first became negative at a 

value of R between 0.32429 and 0.32414. The computed velocity profile at 
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FIGURE 4. Details of the variation of (a) mass-flow rate f(co) and ( b )  heat-transfer rate - &(O) 
with R in the region of largely upflow. The large solid dots correspond to solutions illustrated 
in figures 6 and 7. 
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FIGURE 6. Details of the variation of (a) mess-flow ratef(co) and (b)  heat-transfer rate -qY(O) 
with R in the region of largely downflow. The correspond to solutions illustrated in figure 8. 
Arrows indicate increasing #'( 0) or f( a). 

R = 0-324 14 ( - $'(O) = 0.72900) and Pr = 11-6 reverses from negative to positive 
at  q = 0.015 k 0.005;. As we noted in $1, the magnitude of these reversals increases 
significantly as -#'(O) decreases towards 0, whereas the magnitudes of the outside 
reversals remain very small as f(m) decreases towards 0. 

The behaviour of the temperature profile # is even more dramatic. For R = 0.34920 
and -#'(O) = 0-8, we find that #(a) x 0.93 x 10-8 and #(5 )  x 0.3- 10-8; while for 
R = 0.45402 and -#'(O) = 0.005, we find that #(4) x 0.96 x 10-1 and 545) x 
0.5 x 
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f (w) R - $" f "(0) ta, 
0.06900 0.16160 0.80396 0.21303 100 
0.05800 0.15165 0.80364 0.21300 100 
0.05700 0.1 5 160 0.80334 0.21298 200 
0.05600 0.16 163 0.80306 0.21296 200 
0*06600 0.16166 0.80280 0.21294 200 
0.06400 0.15170 0.80264 0.21293 200 
0.06300 0.161 72 0.80231 0.21292 200 
0-06200 0.16174 0.80208 0,21291 200 
0.05100 0.16176 0.80187 0.21291 200 
0.06000 0.15177 0.80167 0.21291 200 
0.04600 0.1 6180 0.80087 0.2 1292 200 
0.03900 0.15176 0.80026 0.21298 600 
0.03000 0.161 63 0.79989 0.21309 500 
0-01900 0.161 50 0.80006 0.21319 500 
0.01650 0- 16148 0-80020 0.21 31 9 600 
0*01500 0.16148 0.80022 0.2 13 19 600 
0.01400 0.16148 0.80026 0.21319 600 
0*01000 0.15150 0 * 8 0 0 4 3 0,21317 600 
0.00600 0.16163 0430054 0.21 31 4 600 

TABLE 1. Solution data at Pr = 11.6, q = 14394816 computed by continuation 
with respect to j ( m )  in the region of largely upflow 

- 9'(0) 

0.97520 
0.97020 
0.64000 
0.62000 
0.50000 
0-49400 
0.49250 
0.49000 
0 * 4 6 0 0 0 
0*42000 
0*38000 
0.34000 
0.30000 
0.26000 
0~22000 
0~18000 
0.16000 
0.14000 
0- 12000 
0*10000 
0~08000 
0-06000 
0.04000 
0.03000 
0*02000 
0*01000 
0.00600 

R 
0.45402 
0.45000 
0.29296 
0.29218 
0.29183 
0.29181 
0.29181 
0.29181 
0.29237 
0.29462 
0.29824 
0.30351 
0.31037 
0.31889 
0.32919 
0-341 6 1 
0.34854 
0.36625 
0.364'73 
0.37416 
0.38476 
0.39695 
0.41152 
0.42024 
0-43060 
0-44419 
0-46402 

f ( w )  
0*21166 
0.21098 
0.17625 
0-17509 
0.17507 
0.17610 
0.17511 
0.17612 
0.17861 
0.17666 
0.17822 
0.18049 
0.18337 
0-18686 
0.19101 
0.19687 
0*19860 
0.20157 
0.20481 
0.20838 
0.21237 
0.21694 
0.22241 
0.22561 
0.22969 
0.23607 
0.23916 

f" (0 )  

+ 0.1 3806 
+ 0.13453 
-0.07178 
- 0.07769 
- 0.08334 
- 0.08498 
- 0.08594 
- 0.08607 
- 0.09388 
- 0.10344 
- 0.1 1202 
- 0.1 1963 
- 0.12622 
- 0.13174 
- 0.13606 
-0.13898 
-0.13982 
- 0.14014 
- 0.13987 
- 0.13885 
-0.13684 
-0.13345 
-0.12784 
-0.12362 
- 0.1 1765 
- 0.10804 
- 0.09961 

11, 
100 
100 
100 
200 
200 
300 
300 
300 
200 
200 
200 
200 
300 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 

TABLE 2. Solution data at Pr = 11.6, q = 1-894816 computed by continuation 
with respect to f(0) in the region of largely downflow 
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There are some small differences between our computations of solutions and those 
of Carey et d. (1980) for the same solutions. For example, for R = 0.161 72 we find 
-#'(O) = 0430231 andf(0o) = 0.06300, while Carey et al. obtained - f(0) = 0.80232 
andf(0o) = 0.06306. 

We suspect (but are unable to prove) that as f(0o) decreases to 0, the curve in 
figure 4 (a) has additional points of vertical tangency akin to those proved rigorously 
by Hastings & Kitzarinoff (1982) for an analogous but simpler system modelling 
natural convection in saturated porous media. In  addition, we expect that as - #'(O) 
decreases to 0, the upper branch of the curve in figure 6 (a) and the lower branch of the 
curve in figure 6 (b) tend to limit points. However, these limit points cannot correspond 
to any solution because there exist no solutions of (2.4)-(2.6) for any R with f(0) = 0. 
The solutions corresponding to points on the lower branch of the curve in figure 6 (a) 
(upper branch in figure 6 b )  approach the known solutions at increasing values of R. 

4. Conclusions and additional observations 
These results show the additional complexity that ariees in the range 0 < R < 0.6. 

It is in this range of R that both local buoyancy-force and flow reversals arise. These 
lead to convective inversion, a reversal from largely upward to largely downward 
flow. Earliest experiments demonstrated the most evident aspect in this range, 
convective inversion. 

Recent calculations pushed into this R-region from both sides, that is, into con- 
ditions of local buoyancy force reversal (Carey et al. 1980). They extended to the first 
local flow reversals, both outside and inside. However, a large gap waa left in the 
middle, for approximately 0.16 < R < 0.29, in which solutions could not be obtained 
by simple shooting methods, even when augmented by use of the wymptotic behaviour 
of (f, #). Laboratory visualizations showed that very complicated transport arose 
there. It was often neither steady nor of boundary region form (Carey & Gebhart 
1981). 

The calculations here have narrowed the width of the gap slightly, to 0.161 80 < 
R < 0-291 81, for Pr = 11.6. However, they have also produced an inference that 
further solutions of the steady-state boundary-layer equations will not be found in 
the remaining gap. At the least, there are strong indications that there are no direct 
continuations of the earlier kind of solutions. Finite-difference methods applied to the 
time-independent form of (2.1) have also failed to find solutions in a similar gap 
(0.1111 < R < 0.2982) (Wilson & Lee 1981). 

However, our new calculations have also shown something of potentially much 
greater physical significance; that is, multiple steady-state solutions, for single values 
of R. This occurred over two ranges, each just outside the gap, on each of the lower 
and the upper sides. 

Upon continuing the calculations to less vigorous flows (i.e. flows with smaller 
f(0o) = I ,"f 'dq),  to increasing outside flow reversal, and to decreasing R below 0-161 80, 
a second family of solutions arose, to an R-limit of about 0.161 49. Then again, con- 
tinuing to slightly higher values of R, an additional even less vigorous family of flows 
was found. Thus, three solutions were found for the same value of R over this narrow 
range. The multiple solutions illustrated in each of figures 6 and 7, at R = 0.16176 
and R = 0.161 60, are quite similar except in the outside flow-reversal region and in 
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FIGURE 9. Experimental data from Wilson & Vyas (1979) for R = 0.317 that show unsteady 
behaviour of the physical vertical velocity component u. Also shown ese two curves correspond- 
ing to zc as calculated from a multiple steady-state solution 'pair' correeponding to R = 0.31889, 
-#(O) = 0.26000 (solid line) and R = 0.31624, - f (O) = 0-70000 (dashed line). Symbols, in 
order of increasing time, are + , x , a, A, 0. 

the resulting effect of this on entrainment velocity v. These effects are very different 
for the solutions a t  R = 0.15150 corresponding tof(00) = 0.0595 andf(co) = 0.0100. 

Immediately beyond the upper limit point, a t  R = 0.291 81, the second family of 
flows were also much less vigorous, with increasing inside flow reversal. Extremely 
low heat-transfer rates are found at higher values of R. Figure 8 also indicates a 
tremendous difference in the spatial distribution of vertical momentum. The new 
flow illustrated in figure 8 is indeed more vigorous than the previously known flow 
(without inside reversal) illustrated there. 

The irreducible gap in the parameter R-range, which remains after these calcu- 
lations, along with the multiple solutions on each side of the gap, have important 
implications concerning the question of how increasing buoyancy-force reversals (in 
from each side of the gap) may trigger convective inversion. The h a 1  mechanism 
may be different, coming from the two sides. Our results of themselves do not provide 
the mechanisms. They do, however, suggest that any actual flow may be either very 
unstable, unsteady, or both of these. We have plotted in figures 9 and 10 the vertical 
velocity profiles of some of the flows we have computed along with some experimental 
data of Carey & Gebhart (1981) and Wilson & Vyas (1979). These plots are suggestive 
of the existence of oscillations between unstable steady-state flows. Note that the 
numerical solutions plotted in figure 10 correspond to R-values far from the R-value 
corresponding to the data plotted there. These numerical solutions were chosen because 
they crudely fit the data. The comparison is made only to illustrate that oscillation 
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FIGURE 10. Experiniental data from Carey 8G Gebhart (1981) for R = 0.264 that shows oscillatory 
behaviour of f’(7). The circles and + symbols indicate data taken at two different times. 
Also shown are two curves corresponding to f’(7) results calculated from a multiple stegdy-state 
solution ‘pair’ corresponding to R = 0.30361, -$’(O) = 0.34000 (solid line) and R =’ 0.30370, 
-#’(O) = 0.04000 (dashed line). 

between steady states is one possible explanation for the time fluctuations in the data 
of Carey & Ckbhart (1981). On the other hand, Carey & Gebhart (1981) have observed 
flows that are in good agreement with theory (see e.g. figures 8 and 9 of their 
work). 

Any tendency of preference between a strong and a weak flow, at any given value 
of R, would make available relatively large amounts of energy to drive transient 
effects, to amplify disturbances and/or to reverse the general flow direction. Appreci- 
able differences in flow energy distributions were seen in figure 7, and much larger 
ones appear in figure 8. 

In  fact, the measurements cited above indicate that this gap is a region of large 
time-dependent effects. Measurements also suggest that convective inversion does not 
always occur a t  a particular value Ri of R, that is, of T, for a given value of To. No 
sharp value of Ri has been found in any largely vertical flow. M e r e n t  values of Ri 
may arise, in the gap, depending on how the bounding conditions are changed to 
achieve the inversion. 

These new results provide a first guide for attempts to interpret the convective 
motions in this region. The relative hydrodynamic and configurational stability of 
such flows would be important indicators, as would any determinations of the general 
characteristics of transient flows. 
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